

A study on Strongly U-Flat Modules over Matlis Domains

ASHWANI KUMAR GARG¹, DHIRENDRA KUMAR SHUKLA² and BRAJENDRA TIWARI³

^{1, 2}Department of Education in Science and Mathematics, Regional Institute of Education, NCERT, Bhopal (M. P.), (India) ³Professor, Department of Mathematics, RKDF University, Bhopal (M. P.), (India) Corresponding Author E-mail: <u>ashwanimathematics@gmail.com</u> http://dx.doi.org/10.22147/jusps-A/320503

Acceptance Date 08th July, 2020, Online Publication Date 03rd September, 2020

Abstract

In the article, R be a ring with local units that have discussed. For any ME mod-R, the map $\mu(M_1+M_2)$: $(M_1+M_2) \rightarrow (M_1+M_2)$ given by $\sum_{\substack{j=1\\j=1}}^n (Mi + Mj) \otimes r_i \rightarrow \sum_{\substack{j=1\\j=1}}^n (Mi + Mj) \otimes r$ be an isomorphism of right R-modules. Strongly U-Flat Modules over Matlis Domains has defined and discussed with their properties to know the

Strongly U-Flat Modules over Matlis Domains has defined and discussed with their properties to know the relations.

Key words: U-flat modules, Matlis domains, Prufer domain, Matlis cotorsion.

Mathematics subject classification: Primary; 13C11, 13C13 Secondry: 13D07, 13G05.

1. Introduction

"A vector space M over a field R be a set of objects called vectors, which may be added, subtracted and multiplied by scalars (members of the underlying field). Thus M be an Abelian group under addition, and for every $r \in Rand x \in M$ we have an element $rx \in M$. Scalar multiplication is distributive and associative. The multiplicative identity of the field acts as an identity on vectors. Consider a ring R with a local is U-flat as a left R-module"⁶.

- 1. $A=(A_1+A_2)$ be a pure ideal of R.
- 2. For every finite family $\alpha_i \le i \le n$ of the element of A, there exists $t \in A$ such that $\alpha_i = \alpha_i t \forall i \le i \le n$.
- 3. For all $\alpha \in A$ there exists $\beta \in A$ such that $\alpha \in \alpha \beta$.

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)

4.
$$\frac{R}{(A1 + A2)}$$
, be a w-flat R-module.

Moreover, A is finitely generated, and then A is pure if and only if it is generated by an idempotent. Let $O \rightarrow A$ $B \rightarrow C \rightarrow O$ be an exact sequence such that A and C are strongly U- Flat modules, then B is strongly U- Flat modules. Let R be a semi- Dedekind domain. If M be a w-projective R-module and N be a weak U-projective R-module then $(M_1+M_2) \bigotimes_R^N$ is weak U-projective. The subsequent statements are equivalent,^{1,17}

- 1. "R is the Prufer domain.
- 2. Every R-module is pure U-projective.
- 3. Ext_R^I (M₁+M₂, N)=0 for all pure U-projective R-module N.
- 4. Every pure U-projective R-module has on the injective envelope with the unique mapping property"¹.

If M be an R-module, then the subsequent are equivalent⁴:

- 1. "M is pure U-projective; Where $M = M_1 + M_2$.
- 2. M is pure projective concerning every exact sequence $O \rightarrow A \rightarrow B \rightarrow O$, where A is pure U-projective.
- 3. For every exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with ker t = 0 where F is pure W-injective, $K \rightarrow F$ be a pure U-injective pre-envelope of K.
- 4. M is co-kernel of a pure U-injective pre-envelope of $K \rightarrow F$ with F projective"⁴.

Let R be a semi-Dedekind domain, for an R-module M; the subsequent statements are equivalent¹⁷;

- $1. \ ``P \ wid \ (M) \leq n.$
- 2. $\operatorname{Ext}_{R}^{R+1}(N, M) = O$ for all R-module N of U-dimension ≤ 1 .
- 3. If the sequence $0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \dots \rightarrow E_n \rightarrow O$ is exact with $E_0, E_1 = E_{n=1}$ pure U-injective, then also E_n is pure U-injective''¹⁷.

Let R be a semi-Dedekind domain, for an R-module M and an integer $n \ge 0$ the subsequent statements are equivalent¹⁷;

- 1. "P wid (M) \leq n.
- 2. $\operatorname{Ext}_{R}^{n+i}(N, M) = O$ for any pure U-injective R-module N.
- 3. $\operatorname{Ext}_{R}^{n+j}(M, N) = O$ for any pure U-injective R-module N and $j \ge 1$.
- 4. There exists an exact sequence, $0 \rightarrow P_0 \rightarrow P_{n+1} \rightarrow \dots \rightarrow P_1$ $P_0 \rightarrow M \rightarrow O$ where every P_i is pure U-projective"¹⁷.

Definition 1.1: "Let R be an arbitrary ring, we will say that a module M ∈ R- mod is U- flat if the function- $\bigotimes_R(M_1 + M_2)$ is exact on the category R-module. In other words, if whenever O→A $\bigotimes_R(M_1 + M_2)$ →B $\bigotimes_R(M_1 + M_2)$ →C $\bigotimes_R(M_1 + M_2)$ →O be a short exact sequence. Since O→ $\bigotimes_R(M_1, M_2)$ is exact on the R.H.S., the module M is W- flat if any A $\bigotimes_R(M_1 + M_2)$ →B $\bigotimes_R(M_1 + M_2)$ "¹⁷.

Lemma 1.2: Let R be a ring with local units. For any ME mod-R the map, $\mu(M_1 + M_2) : (M_1 + M_2) \rightarrow (M_1 + M_2)$ given by $\sum_{i=1}^{n} (M_i + M_j) \otimes r_j \rightarrow \sum_{i=1}^{n} (M_i + M_j) \otimes r$ be an isomorphism of right R-modules⁶.

Proof: Since $(M_1 + M_2) = (M_1 + M_2)$ this map is clearly an epimorphism. Suppose $\sum_{\substack{i=1\\j=1}}^{n} (M_i + M_j) r_i = O.$ Let ϵ be a local unit in ring R satisfying $er_i = r_i e = r_i$ for i = 1, 2, 3 n. Then, $\sum_{\substack{j=1\\j=1}}^{n} (M_i + M_j) \otimes r_i = \sum_{\substack{i=1\\j=1}}^{n} (M_i + M_j) \otimes r_i \epsilon = \sum_{\substack{j=1\\j=1}}^{n} (m_i r_i + m_j r_j) \otimes \epsilon = \otimes \epsilon = 0.$

Corollary 1.3: A ring R with local units is U-flat as a left R-module^{4,17}.

Proof: Let $A = A_1 + A_2$ and $B = B_1 + B_2$, let $O \rightarrow A \rightarrow B$ be an exact sequence of right R-modules. Tensoring with the left R-module R, This leads to a commutative diagram:

Figure 1.1: Diagram to explain commutative property^{4,17}.

Here $id_R is$ the identity map on R and μ_A , μ_B are the isomorphism defined in lemma 1. Since μ_A , f and μ_B are all monomorphisms, so is f \bigotimes id_R . Hence R is U- flat in R-Mod^{4,17}.

Proposition 1.4: Let A be an ideal of a ring R. The subsequent conditions are equivalent²³;

- 1. "A= $(A_1 + A_2)$ be a pure ideal of R.
- 2. For every finite family $\alpha_i \le i \le n$ of elements of A, there exists $t \in A$ such that $\alpha_i = \alpha_i t \forall i, 1 \le i \le n$.
- 3. For all $\alpha \in A$ there exists $\beta \in A$ such that $\alpha = \alpha\beta$.
- 4. $\frac{R}{A1 + A2}$, be a U-flat R-module".

Moreover, if A is finitely generated, then A is pure if and only if it is generated by an idempotent⁴.

Proof: (2) \Rightarrow (3), is obvious.

(3) \Rightarrow (4), let B be an ideal of R, we must prove that $A \cap B = A.B$ if $a \in (A_1 + A_2) \cap B$ there exists $t \in (A_1 + A_2)$ such that $\alpha = \alpha t$. Hence $\alpha \in (A_1 + A_2) B^{23}$.

(4) \Rightarrow (3), if $\alpha \in A_1 + A_2$, then $R\alpha = (A_1 + A_2) \cap (A_1 + A_2)\alpha = A\alpha^{23}$.

(1) \Rightarrow (3), if $\alpha \in A_1 + A_2$, 1 is solution of the equation $\alpha x = \alpha$. So this equation has a solution in $A_1 + A_2 = A^{23}$. (3) \Rightarrow (2) Let $\alpha_1, \alpha_2, \alpha_2$, α_n be the element of $(A_1 + A_2) = A$, we proceed by induction on n. There exist t \in (A₁ + A₂) such that $\alpha_m = t \alpha_m$. By induction hypothesis there exist $S \in A_1 + A_1$ such that, $\alpha_n - t \alpha_n = s(\alpha_n - t \alpha_n) \forall i$; $1 \le i \le (n-1)$. Now, it is easy to check that $(s + t - st) \alpha_i = \alpha_i \forall i$; $1 \le i \le n^{23}$. (2) \Rightarrow (1), we consider the subsequent system of equations, $\sum_{i=1}^n r_{j,i} r_i = \alpha_j \in A$, $I \le J \le P$. Assume that

 $(\beta_1, \beta_2, \beta_3, \dots, \beta_n)$ be a solution of this system in R, then there exists $S \in (A_1 + A_2)$ such that $\alpha_j = S \alpha_j \quad \forall i ; 1 \le i \le P$, so $(s\alpha_1, s\alpha_2, s\alpha_3, \dots, s\alpha_n)$ be a solution of this system in $A_1 + A_2 = A^{23}$.

Lemma 1.5: Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence such that A and C are strongly U-Flat modules, then B is strongly U-flat modules¹³.

Proof: Let M be a strongly U-flat module, by induced exact sequence, $\operatorname{Ext}_{R}^{1} (C \otimes (M_{1} + M_{2})) \rightarrow \operatorname{Ext}_{R}^{1} (B \otimes (M_{1} + M_{2})) \rightarrow \operatorname{Ext}_{R}^{1} (A \otimes (M_{1} + M_{2}))$ Since $\operatorname{Ext}_{R}^{1} (C \otimes (M_{1} + M_{2})) = 0$ and $\operatorname{Ext}_{R}^{1} (A \otimes (M_{1} + M_{2})) = 0$ then $\operatorname{Ext}_{R}^{1} (B \otimes (M_{1} + M_{2})) = 0^{13}$.

Example 1.6: The Z- module Q is strongly flat modules recalls that R is called a Matlis domain if the projective Dimension of Q (or equivalently k) is one, module C is called Matlis cotorsion if Ext_{R}^{1} (Q \otimes C) =0 and M is called strongly U- flat if Ext_{R}^{1} ((M₁ + M₂) \otimes C) = 0 for every Matlis cotorision R-module C⁶.

Corollary 1.7: Let R be a semi-Dedekind domain. If M be a U-projective R-module and N is weak U-projective R-module then $(M_1 + M_2) \otimes_R^N$, be a weak W-projective¹².

Proof: The isomorphism $Tor_n^R((M_1 + M_2) \otimes N, A) \cong (M_1 + M_2) \otimes Tor_n^R(N, A)$ together with pure U-projective and pure U-injective $\sigma(M_1 + M_2) : (M_1 + M_2) \rightarrow E(M_1 + M_2)$ denotes the pure injective envelope of an R-module M where $M = M_1 + M_2$. Recall that an injective envelope $\sigma(M_1 + M_2) : (M_1 + M_2) \rightarrow E(M_1 + M_2)$ has the unique mapping property, if for an homomorphism $f: (M_1 + M_2) \rightarrow N$ with ker f = 0 and N pure injective. Then there exist a unique homomorphism g: $E(M_1 + M_2) \rightarrow E$ such that $g \sigma m : f$. where $M_1 + M_2 = M^{12}$.

Theorem 1.8: Subsequent statements are equivalent²;

- 1. "R be a Prufer domain
- 2. Every R-module is pure U- injective.
- 3. $Ext_R^1(M_1 + M_2, N) = 0$ for all pure U-injective R-module N.
- 4. Every pure U-injective R-module has an injective envelope with unique mapping property"².

Proof: (a) \Rightarrow (b), it is easy to verify².

(b) \Rightarrow (c), if every R-module is pure w-projective then Ext_R^1 (M₁ + M₂,N) = 0². (d) \Rightarrow (a), let M be a pure U-injective R-module. We have the subsequent exact commutative diagram;

Figure 1.2: Diagram to explain exact commutative property².

Note that $\sigma L\gamma M = 0 = \sigma M$, So $\sigma L\gamma M = 0$ in view of the (d), therefore $L = im(\gamma) \subseteq ker(\sigma L) = 0$ and hence M is pure U-injective where $M = M_1 + M_2$. Let I be a class of R-module and M be an R-module. A homomorphism $\phi \in Hom_R$ (N, M) with $N \in I$ is called an I pure pre-cover of M, if the induces map $Hom_R(I_N, \phi) : Hom_R(N^1, N) \rightarrow Hom_R$ ($N^1, M_1 + M_2$) is surjective for all $N^1 \in l$. An I- pure cover $\phi \in Hom_R(N, M + M_2)$ is called an I- pure cover if every $\gamma \in Hom_R(N, M_1 + M_2)$ is called an I- pure pre-cover. If I is the class of pure U- injective R-module, then an I- envelope is called a pure U- injective envelope².

Proposition 1.9: If M be an R-module, then the subsequent statements are equivalent⁶;

- 1. "M is pure U- projective; where $M = M_1 + M_2$
- 2. M is pure projective concerning every exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, where A is pure U- projective.
- 3. For every exact sequence, $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with ker t = 0 where F is pure U-injective, K \rightarrow F be a pure U-injective pre-envelope of K.
- 4. M is co-kernel of a pure U-injective pre-envelope of $K \rightarrow F$ with F projective"⁶.

Proof: (1) \Rightarrow (2), let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be an exact sequence where A is pure U- injective. Then Ext_{R}^{1} (M₁+M₂+A) = 0 by (5), Therefore Hom_R(M₁+M₂, B) \rightarrow Hom_R(M₁+M₂, C) \rightarrow 0 is exact, and (2) holds⁶.

(2) \Rightarrow (1), for every pure U-injective R-module N, there be a short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L \rightarrow 0$ with E injective which induces an exact sequence, $\text{Hom}_R(M_1+M_2+E)\rightarrow\text{Hom}_R(M_1+M_2+L)\rightarrow\text{Ext}_R^1(M_1+M_2+N)\rightarrow 0$. Since, $\text{Hom}_R(M_1+M_2+E)\rightarrow\text{Hom}_R(M_1+M_2+L)\rightarrow 0$ is exact by (6), we have $\text{Ext}_R^1(M_1+M_2+N)=0$ and (5) follows⁶.

(1) \Rightarrow (3), it is easy to verify⁶.

(3) \Rightarrow (4), let $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ be an exact sequence with P-pure projective and $M = M_1 + M_2$. Here P is pure W- injective by hypothesis; thus, $K \rightarrow P$ be a pure U-injective pre-envelope⁶.

(4) \Rightarrow (1), there be an exact sequence $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ where $K \rightarrow P$ be a pure U-injective pre-envelope with P pure projective. It gives rise to the exactness of $\text{Hom}_R(P, N) \rightarrow \text{Hom}_R(K, N) \rightarrow \text{Ext}_R^1(M, N) \rightarrow 0$ for every pure U-injective R-module N. Note that $\text{Hom}_R(P, N) \rightarrow \text{Hom}_R(K, N) \rightarrow 0$ is exact by (8). Hence $\text{Ext}_R^1(M, N) \rightarrow 0$, as desired, where $M = M_1 + M_2^{-6}$.

2. Pure U-projective Dimension over the semi-Dedekind Domain :

Definition: (1) "For any R-module M, let pure U-injective dimension P wid(M) of M, denote the smallest integer $n \ge 0$ such that $\text{Ext}_R^{n+1}(N,M) = 0$ for every R-module N of weak dimension ≤ 1 . (If no such n exists, set P wid(M) = ∞)"¹⁷.

(2) "P wid(R) = Sup {P wid(M) : M be an R-module}"¹⁷.

Lemma 2.1: Let R be a semi-Dedekind domain then for an R-module M, the subsequent statements are equivalent¹⁷;

- 1. "P wid (M) \leq n.
- 2. $\operatorname{Ext}_{R}^{n+1}(N, M) = 0$ for all R-module N of U- dimension ≤ 1 .
- 3. If the sequence $0 \rightarrow M \rightarrow E_0 \rightarrow E_1 \rightarrow \dots \rightarrow E_n \rightarrow O$ is exact with E_0, E_1, \dots, E_{n-1} pure U-injective, then also E_n is pure U- injective".

Proof: (1) \Rightarrow (2), using induction on n, it is clear that if $P \operatorname{wid}(M) \le n-1$ resolve N by $0 \to K \to P \to N \to 0$ with K and P flat, K have P w-dimension ≤ 1 and $\operatorname{Ext}_{R}^{n+1}(N, M) \cong \operatorname{Ext}_{R}^{1}(K, M) = 0$ by induction hypothesis¹⁷. (2) \Rightarrow (3), follows from the isomorphism $\operatorname{Ext}_{R}^{n+1}(N, M) \cong \operatorname{Ext}_{R}^{1}(N, E_{n})^{17}$. (2) \Rightarrow (1), trivial^[17].

Proposition 2.2: Let R be a semi-Dedekind domain. For R-module M and an integer $n \ge 0$, the subsequent are equivalent^{6,14}:

- 1. "P wid(M) \ge n.
- 2. $Ext_R^{n+1}(N, M) = 0$ for any pure U-injective R-module N.
- 3. $\text{Ext}_R^{n+1}(M, N) = 0$ for any pure U-injective R-module N. There exists an exact sequence, $0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \dots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow O$ where every P_i is pure U-projective".

Proof: (2) \Rightarrow (3), for any pure U-injective R-module, N, there be a short exact sequence $0 \rightarrow N \rightarrow E \rightarrow L$ $\rightarrow 0$, where E is injective. Then the sequence $\text{Ext}_R^{n+1}(N, L) \rightarrow \text{Ext}_R^{n+1}(M, E) = 0$ is exact. Note that L is pure U-injective so $\text{Ext}_R^{n+1}(M, N) = 0$ by (2) hence $\text{Ext}_R^{n+1}(M, N) = 0^{6,14}$.

 $(1) \Rightarrow (2)$, is similar to $(1) \Rightarrow (3)$.

(1) \Leftrightarrow (4), is straightforward.

 $(2) \Rightarrow (1)$, is obvious.

3. Conclusion

Hence these results will generalize the concept of Strongly U-Flat Modules over Matlis Domains. In this study, we found that a ring R with a local is U-flat as a left R-module and finitely generated, and then it is pure if and only if generated by an idempotent. In $O \rightarrow A \rightarrow B \rightarrow C \rightarrow O$, exact sequences A, C are strongly U-Flat modules, and then B is strongly U-flat modules. Relations and various definitions have discussed, which explains more about R-module.

References

- 1. Bazzoni, Silvana, and Marco Tarantino. "Recollements from cotorsion pairs." Journal of Pure and Applied Algebra 223.5, 1833–1855 (2019).
- 2. Bland, Paul E. Rings and their modules. Walter de Gruyter, (2011).
- Couchot, F. "Almost clean rings and arithmetical rings. Commutative algebra and its applications, 135– 154." (2009).
- 4. Fontana, Marco, Salah-Eddine Kabbaj, and Bruce Olberding, eds. Commutative Algebra and Its Applications: Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, June 23-28, 2008. Walter de Gruyter, (2009).
- 5. Fuchs, László, and Sang Bum Lee. "The functor hom and cotorsion theories." Communications in Algebra 37.3, 923–932 (2009).
- 6. Govind Sahu and M.R. Aloney. "Strongly W Flat Modules over Matlis Domain". International Journal of Research in Science And Technology. Vol. No. 4, Issue 2, 44-50 (2014).
- 7. L. Mao and N. Ding: "The Cotorsion dimension of modules and rings", Leet. Notes Pure and Appl. Math. 249, 217-233 (2005).

- 8. Lam, Tsit-Yuen. Exercises in modules and rings. Springer Science & Business Media, 2006.
- 9. László Fuchs, Sang Bum Lee: "On weak-injective modules over integral domains" Jour. of Algebra *323*, 1872-1878 (2010).
- 10. Lee, Sang Bum. "A note on the Matlis category equivalence." Journal of Algebra 299.2, 854-862 (2006).
- 11. Lee, Sang Bum. "On the existence of a single test module." Journal of Pure and Applied Algebra 223.8, 3402-3412 (2019).
- Lee, Sang Bum. "Strongly flat modules over Matlis domains." Communications in Algebra 43.3, 1232–1240 (2015).
- 13. Mao, Lixin, and Nanqing Ding. "FI-injective and FI-flat modules." Journal of Algebra 309.1, 367–385 (2007).
- Mao, Lixin. "Relative homological groups over coherent rings." Quaestiones Mathematicae 35.3, 331–352 (2012).
- 15. N. Mahdouand, M. Tamekkante: "IF-dimension of modules", Communication in Mathematics and Application, *1* (2), 99-104 (2010).
- 16. Narabayashi, T., *et al.* "Effects of key parameters on energy distribution and kinetic characteristics in collision of bar and beam." Journal of sound and vibration 308.3–5, 548–562 (2007).
- 17. Nikmehr, Mohammad Javad, Zahra Poormahmood, and Reza Nikandish. "Weak-projective dimensions." Turkish Journal of Mathematics 35.4, 627–636 (2011).
- Pino, Gonzalo Aranda, Kulumani M. Rangaswamy, and Mercedes Siles Molina. "Weakly regular and selfinjective Leavitt path algebras over arbitrary graphs." Algebras and representation theory 14.4, 751–777 (2011).
- 19. Positselski, L., and A. Slávik. "Flat morphisms of finite presentation are very flat, electronic preprint." arXiv preprint arXiv: 1708.00846.
- 20. Pu, Yongyan, Gaohua Tang, and Fanggui Wang. "n-Matlis cotorsion modules and n-matlis domains." Journal of Algebra and Its Applications 19.07, 2050139 (2020).
- 21. S. Bazzoni and L. Salce: "On strongly flat modules over Integral domains", The Rocky Mountain Jour. of Math., *34*(2), 417-439 (2011).
- 22. Sang Bum Lee: "Strongly flat module over Matlis domains", Communication in Algebra, 43(3), 1232-1240 (2015).
- 23. Singh R.S. and Aloney M.R. "Quasi M-projective and Quasi M-injective modules", Proc. Math. Soc. B.H.U. Varanasi Vol. 5 (1989).
- 24. Tiwary A. K. and Pandya B. M. "Pseudo projective and pseudo injective modules", Indian Jour. of Pure and App. Math. 9 No-9, 941-949 (1978-79).
- 25. Tiwary A. K. and Singh R. S. "M-flatness and MI flatness", Bull. Math. Dela Soc. Seci. Math. Dela R.S. de Romania Tome 25, 195-200 (1973).
- 26. Tiwary A. K. Bharadwaj P. C. and Pandya B.M. "Quotients of pseudo projective modules", Bull. Institute. Math. Aca. Sinica, 357-367 (1982).
- 27. Yongyan Pu, Gaohua Tang and Fanggui Wang: "n-Matlis cotorsion modules and n-Matlis domains" Jour. of Algebra and its Applications, 131-137 (2019).