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Abstract

In thbe article, R be a ring with local units that have discussed. For any ME mod-R, the map (M1+M2):

(M1+M2) (M1+M2) given by  ∑ (Mi + Mj)݊
݆−1
݆=1

 ⨂ri → ∑ (Mi + Mj)݊
݆−1
݆=1

 ⨂r  be an isomorphism of right R-modules.

Strongly U-Flat Modules over Matlis Domains has defined and discussed with their properties to know the
relations.
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1. Introduction

“A vector space M over a field R be a set of objects called vectors, which may be added, subtracted
and multiplied by scalars (members of the underlying field). Thus M be an Abelian group under addition, and for
every r   Rand x M we have an element rx  M. Scalar multiplication is distributive and associative. The
multiplicative identity of the field acts as an identity on vectors. Consider a ring R with a local is U-flat as a left
R-module”6.

1. A= (A1 +A2) be a pure ideal of R.
2. For every finite family i i n of the element of A, there exists t A such that i =i t  i i n.
3. For all  A there exists   A such that  .
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4. ܴ
 (A1 + A2)

 , be a w-flat R-module.

Moreover, A is finitely generated, and then A is pure if and only if it is generated by an idempotent. Let OA
B CO be an exact sequence such that A and C are strongly U- Flat modules, then B is strongly U- Flat
modules. Let R be a semi- Dedekind domain. If M be a w-projective R-module and N be a weak U-projective
R-module then (M1 +M2) ⨂ܴ

ܰ  is weak U-projective. The subsequent statements are equivalent,1,17

1. “R is the Prufer domain.
2. Every R-module is pure U-projective.
3. Extܴܫ   (M1 +M2, N)=0 for all pure U-projective R-module N.
4. Every pure U-projective R-module has on the injective envelope with the unique mapping property”1.

If M be an R-module, then the subsequent are equivalent4:
1. “M is pure U-projective; Where M= M1 +M2.
2. M is pure projective concerning every exact sequence OABO, where A is pure U-projective.
3. For every exact sequence 0 K F M 0 with ker t = O where F is pure W-injective, K F be a pure

U-injective pre-envelope of K.
4. M is co-kernel of a pure U-injective pre-envelope of KF with F projective”4.

Let R be a semi-Dedekind domain, for an R-module M; the subsequent statements are equivalent17;
1. “P wid (M)   n.
2. Extܴܴ+1 (N, M) = O for all R-module N of U-dimension   1.
3. If the sequence 0M E0 E1…….En  O is exact with E0, E1 = En=1 pure U-injective, then also En

is pure U-injective”17.

Let R be a semi-Dedekind domain, for an R-module M and an integer n  0 the subsequent statements are
equivalent17;

1. “P wid (M)  n.

2. Extܴ݊+݅  (N, M) = O for any pure U –injective R-module N.

3. Extܴ
݊+݆  (M, N) = O for any pure U-injective R-module N and j 1.

4. There exists an exact sequence, 0 P0  Pn+1…….P1  P0 M  O where every Pi  is pure U-
projective”17.

Definition 1.1: “Let R be an arbitrary ring, we will say that a  module M   R- mod is U- flat if the
function- ⨂ R(M1 + M2) is exact on the category R-module. In other words, if whenever OA⨂ R (M1 + M2) B
⨂ R(M1 + M2) C ⨂ R(M1 + M2) O be a short exact sequence. Since O⨂ R(M1, M2) is exact on the R.H.S.,
the module M is W- flat if any A ⨂ R(M1 + M2) B ⨂ R(M1 + M2)”17.

Lemma 1.2:  Let R be a ring with local units. For any ME mod-R   the map, μ (M1 + M2) : (M1 + M2)

(M1 + M2)  given by ∑ ݅ܯ) + ݊ܯ݆
݅−1
݆=1

) ⨂ rj ⟶ ∑ ݅ܯ) + ݊ܯ݆
݅−1
݆=1

) ⨂  r be an isomorphism of right R-modules6.
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Proof:  Since (M1 + M2) R = (M1 + M2) this map is clearly an epimorphism. Suppose

∑ ݅ܯ) + ݊ܯ݆
݅−1
݆=1

) ri = O  .  Let   be a local unit in ring R satisfying eri = rie = ri  for i =1, 2, 3 ……….. n. Then,

∑ ݅ܯ) + ݊ܯ݆
݅−1
݆=1

)⨂ ri  = ∑ ݅ܯ) + ݊ܯ݆
݅−1
݆=1

)⨂ ri ∊  = ∑ (݉݅ ݎ݅ + ݆݉ ݊ݎ݆
݅−1
݆=1

)⨂ ∊ = ⨂ ∊ = 0. 

Corollary 1.3: A ring R with local units is U-flat as a left R-module4,17.

Proof:  Let A = A1 + A2 and B = B1 + B2, let O  A B be an exact sequence of right R-modules.
Tensoring with the left R-module R, This leads to a commutative diagram:

Figure 1.1: Diagram to explain commutative property4,17.

Here idR is the identity map on R and A,B  are the isomorphism defined in lemma 1. Since A, f and B are all
monomorphisms, so is f ⨂  idR. Hence R is U- flat in R-Mod4,17.

Proposition 1.4: Let A be an ideal of a ring R. The subsequent conditions are equivalent23;
1. “A= (A1 + A2) be a pure ideal of R.
2. For every finite family αi  i  n of elements of A, there exists tA such that αi = αi t  i, 1  i  n.
3. For all α  A there exists βA such that α = αβ.

4.
ܴ

A1 + A2
 , be a U-flat R-module”.

Moreover, if A is finitely generated, then A is pure if and only if it is generated by an idempotent4.

Proof: (2)  (3), is obvious.
(3)(4), let B be an ideal of  R, we must prove that A B = A.B if a(A1 + A2)B there exists t(A1+A2)  such
that α =αt.  Hence α (A1 + A2) B23.
(4) (3), if α  A1 + A2, then Rα = (A1 + A2) (A1 + A2)α = Aα23.
(1)  (3), if α  A1 + A2, 1 is solution of the equation α x = α. So this equation has a solution in A1 + A2 = A23.
(3)  (2) Let α1, α2, α2 ,……………αn be the element of (A1 + A2) = A, we proceed by induction on n. There exist



t  (A1 + A2) such that αm = t αm. By induction hypothesis there exist S  A1 + A1 such that, αn - t αn = s(αn - t
αn )  i ;  1 i  (n-1). Now, it is easy to check that (s + t - st) αi = αi   i ;  1 i  n23.

(2)  (1), we consider the subsequent system of equations,  ∑ ݎ݆ .݅ ݊ݎ݅ 
݅−1  = αj  ∈ A, I ≤ ܬ ≤ P.  Assume that

(β1 , β2  β3 ,…... βn) be a solution of this system in R, then there exists S  (A1 + A2 ) such that αj  = S αj      i ;  1
i  P, so (sα1 , sα2 , sα3 ,…………… sαn ) be a solution of this system in A1 + A2 = A23.

Lemma 1.5: Let 0ABC  0 be an exact sequence such that A and C are strongly U-Flat modules,
then B is strongly U-flat modules13.

Proof:  Let M be a strongly U-flat module, by induced exact sequence,  Extܴ1   ( C ⨂  (M1 + M2)) 

Extܴ1   ( B ⨂  (M1 + M2 ))  Extܴ1   ( A A ⨂  (M1 + M2 )) Since  Extܴ1   ( C ⨂  (M1 + M2 )) = 0   and  Extܴ1  ( A  A  ⨂ (M1

+ M2 )) = 0 then  Extܴ1  ( B ⨂  (M1 + M2 )) = 013.

Example 1.6:  The  Z- module  Q  is strongly flat modules recalls that R is called a Matlis domain if  the
projective Dimension of  Q (or  equivalently  k)  is one, module C is called Matlis cotorsion if  Extܴ1   (Q ⨂  C) =0

and M is called strongly U- flat if  Extܴ1  ((M1 + M2 ) ⨂  C) = 0 for every Matlis cotorision R-module C 6.

Corollary 1.7:  Let R be a semi-Dedekind domain. If  M be a U-projective  R-module  and  N is weak

U-projective R-module  then  (M1 + M2 )  ⨂ܴ
ܰ  , be a weak W-projective12.

Proof: The isomorphism ܴܶݎ݊݋  ((M1 +M2 ) ⨂  N, A ) ≅  (M1 +M2 )  ⨂ ܴܶݎ݊݋  ( N, A) together with pure
U-projective and pure U-injective (M1 + M2) : (M1 + M2)  E(M1 + M2)  denotes the pure injective envelope
of an R-module  M  where M = M1 + M2 .  Recall that an injective envelope (M1 + M2) : (M1 + M2)  E(M1 + M2)
has the unique mapping property, if  for an homomorphism  f : (M1 + M2)  N with  ker f = 0 and  N pure injective.
Then there exist a unique homomorphism g: E(M1 + M2) E such that g  m : f. where M1 + M2 = M12.

Theorem 1.8: Subsequent statements are equivalent2;
1. “R be a Prufer domain
2. Every R-module is pure U- injective.
3. Extܴ1  ( M1 + M2 , N ) = 0 for all pure U-injective R-module N.
4. Every pure U-injective R-module has an injective envelope with unique mapping property”2.

Proof: (a) (b), it is easy to verify2.
(b)  (c), if every R-module is pure w-projective then Extܴ1   ( M1 + M2 ,N) = 02.
(d)  (a), let M be a pure U-injective R-module. We have the subsequent exact commutative diagram;

Figure 1.2: Diagram to explain exact commutative property2.
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Note that LM = 0 = M, So LM = 0 in view of the (d), therefore L = im () ker (L) = 0 and hence M is pure
U-injective where M = M1 + M2. Let I be a class of R-module and M be an R-module. A homomorphism  HomR

(N, M)  with  N  I  is called an I pure pre-cover of  M, if  the induces map  HomR ( IN , ) : HomR( N1, N)  HomR

( N1, M1 + M2) is surjective for all  N1  l. An  I- pure cover   HomR ( N, M + M2) is called an I- pure cover if
every  HomR( N, M1 + M2) is called an I- pure pre-cover. If  I is the class of pure  U- injective R-module, then
an I- envelope is called a pure U- injective envelope2.

Proposition 1.9: If M be an R-module, then the subsequent statements are equivalent6;
1. “M is pure U- projective; where M = M1 + M2

2. M is pure projective concerning every exact sequence 0 ABC0, where A is pure U- projective.
3. For every exact sequence, 0  K F M 0 with ker t = 0 where F is pure U-injective, K F be a pure

U-injective pre-envelope of K.
4. M is co-kernel of a pure U-injective pre-envelope of K  F with F projective”6.

Proof:  (1)  (2), let   0 A  B  C  0  be an exact sequence where A is pure U- injective. Then
Extܴ1   (M1 + M2 + A) = 0 by (5), Therefore HomR ( M1 + M2 , B)  HomR ( M1 + M2 , C)0 is exact, and (2) holds6.

(2)  (1), for every pure U-injective R-module N, there be a short exact   sequence 0  N  E  L  0  with E
injective which induces an exact sequence, HomR (M1+M2 +E)HomR(M1+M2 +L)Extܴ1  (M1+M2+N)  0.

Since, HomR (M1+M2+E)HomR (M1+M2 +L)  0  is exact by  (6), we have Extܴ1   (M1 + M2 +N) = 0 and (5)
follows6.
(1)  (3), it is easy to verify6.
(3)  (4), let 0 K PM 0  be an exact sequence with P-pure projective and M = M1 + M2. Here P is pure
W- injective by hypothesis; thus, K  P be a pure U-injective pre-envelope6.
(4)  (1), there be an exact sequence 0 K PM 0  where K  P be a pure U-injective pre-envelope with
P pure projective. It gives  rise  to the exactness of HomR(P, N)  HomR(K, N)  Extܴ1  (M, N)  0   for every pure

U- injective R-module N. Note that HomR(P, N)  HomR(K, N)  0 is exact by (8). Hence Extܴ1  (M,  N)   0, as
desired , where M = M1 + M2 

6.

2.  Pure U-projective Dimension over the semi-Dedekind Domain :

Definition: (1) “For any R-module M, let pure U-injective dimension P wid(M) of  M, denote the
smallest integer n  0 such that Extܴ݊+1(N,M) = 0 for every R-module N of weak dimension  1. (If no such n
exists, set P wid(M) = )”17.
(2) “P wid(R) = Sup {P wid(M) : M be an R-module}”17.

Lemma 2.1: Let R be a semi-Dedekind domain then for an R-module M, the subsequent statements are
equivalent17;

1. “P wid (M)   n.
2. Extܴ݊+1 (N, M) = 0 for all R-module N of U- dimension   1.

3. If the sequence 0 M  E0  E1…………  En  O is exact with E0, E1, …… En-1 pure U-injective,
then also En is pure U- injective”.
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Proof: (1)  (2), using induction on n, it is clear that if P wid(M)  n-1 resolve N by 0 K  P N0

with K and P flat, K have P w-dimension  1 and Extܴ݊+1 ( N, M) ≅  Extܴ1   ( K , M) = 0 by induction hypothesis17.

(2)  (3), follows from the isomorphism Extܴ݊+1 (N, M) ≅  Extܴ1   (N, En)17.
(2)  (1), trivial[17].

Proposition 2.2:  Let R be a semi-Dedekind domain. For R-module M and an integer n0, the subsequent
are equivalent6,14:

1. “P wid(M)   n.
2. Extܴ݊+1(N, M) = 0 for any pure U-injective R-module N.

3. Extܴ݊+1(M, N) = 0 for any pure U-injective R-module N. There exists an exact sequence, 0PnPn-1…

P1 P0  M  O where every Pi  is pure U-projective”.

Proof: (2)  (3), for any pure U-injective R-module, N, there be a short exact sequence 0N EL
0, where E is injective. Then the sequence Extܴ݊+1 (N, L) Extܴ݊+1(M, E) = 0 is exact. Note that L is pure

U-injective so Extܴ݊+1 (M, N) = 0 by (2) hence Extܴ݊+1(M, N) = 06,14.
(1)  (2), is similar to (1)   (3).
(1) ⟺  (4), is straightforward.
(2)  (1), is obvious.

3. Conclusion

Hence these results will generalize the concept of Strongly U-Flat Modules over Matlis Domains. In
this study, we found that a ring R with a local is U-flat as a left R-module and finitely generated, and then it is
pure if and only if generated by an idempotent. In OA  B CO, exact sequences A, C are strongly U-Flat
modules, and then B is strongly U-flat modules. Relations and various definitions have discussed, which
explains more about R-module.
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