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Abstract

In this paper, the authors investigate the initial coefficient bounds for a new generalized subclass of
multivalent functions related to Sigmoid function. Also the relevant connections to Fekete-Szegd6 inequality
and Hankel determinant for these classes are briefly discussed. Our results serve as a new generalization in this
direction.
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1. Introduction and Preliminaries

The theory of special functions is significantly important to scientists and engineers. Though not
with any specific definition but its applications extend to physics, computer etc. Recently, the theory of special
functions has been overshadowed by other fields like real analysis, functional analysis, algebra, topology and
differential equations.

There are various special functions but we shall concern with one of the activation function known as
sigmoid function or simple logistic function. Activation function is an information process that is inspired by
the biological nervous system such as brain processes information. It comprises of large number of highly
interconnected processing elements (neurons) working together to solve a specific task. The function works in
similar way the brain does, it learns by examples and cannot be programmed to solve a specific task.

The sigmoid function of the form
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1
h(z)=
(@)= (LD
is differentiable and has the following properties:
. It outputs real numbers between 0 and 1.
. It maps a very large input domain to a small range of outputs.
o It never loses information because it is a one-to-one function.

. It increases monotonically.
The four properties above shows that sigmoid function is very useful in geometric function theory.

Let Ap denote the class of functions of the form

f(z):zp+ian+pzn+p’ 1.2)

n=2

which are analytic and p-valent in the open unitdisc E = {z :|Z| < 1} .

Let U be the class of bounded functions

w(z)= icnz”, (L3)
which are regular in the unit disc and satis;;ilng the conditions
w(0)=0 and [w(z)[<lin E.
For functions f and g analytic in E, we say that f is subordinatetod, denotedby f < g, if there
exists a Schwarz function w(z)e U , W(Z) analyticin Ewith w(0) =0 and ‘W(Z)‘ <1in E, such that
f (z)=g(w(z)). 1t follows from Schwarz lemma that f(z)~ g(z)zeE)= f(0)=g(0) and
f(E)c g(E) (see detail in®).

if f(z)=2"+> a,,z"" and g(z)=z2° +2 002" areiin A, then Convolution or
=1 =1

Hadamard product of the functions f and g is denoted by f * g and is defined as
(fxg)z)=2"+2 a, b, 2"
n=1

Let go(z) be an analytic function with positive real part in E such that go(O) =1 and qo’(O) >0 and
maps E onto a region starlike with respect to 1 and symmetric with respect to the real axis.

Fekete and Szegd in 1933 gave the sharp bound for the functional ‘as - /,tazz‘ for the functionsin the

class S of univalent functions when p is real. The determination of the sharp bounds for the functional ‘as - /,tazz‘

is known as the Fekete-Szegd problem and this has been investigated by several authors for different subclasses
of univalent functions.
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In 1976, Noonan and Thomas® stated the qth Hankel determinant for > 1and n>1 as

a‘n a'n+1 a'n+q—1
a'n+1

Hq(n)_
Qnig1 v e Qg

This determinant has also been considered by several authors. Easily, one can observe that the

Fekete and Szego functional is H, (1)

aZ
a;, a,

For gq=2and n=2, HZ(Z) = is the second Hankel determinant.

Afunction f(z)e A, issaid to be in the class f (z)e S;'p((p) if

1] 1 zf'(z
1+E{B%—l}<¢(z)(pe N,zeE)

Afunction f(z)e A, is said to be in the class f (2)e vap((p) if it satisfies

1—%+${1+ Z::’((ZZ))} <p(z)peN,zeE)

The classes S;'p((p) and Cb'p((p) were studied in’. For b = 1 we have the classes S;((p) and

Cp((p) (see?) and for p = b = 1 the classes reduced to the classes S*((p) and C((p) which were earlier

introduced and investigated in*. These classes become the classes of starlike and convex functions respectively

when
1+7z
(0(2)— 1-7
Alsofor p=1and ¢(z)= ;’_4_—2 the classes S;'p((p) and C, () reduces tothe classes S™(b)
A

and C(b) which were investigated in® and .

A function f(Z)e A, is said to be in the class f(Z)e M p(a) iffor ¢ >0,

l-a) Z: ’((ZZ)) + 0{1+ Z]f :’((ZZ))J >0.

The function in class M, (a) are called p-valent alpha-convex function. Obviously M 1(a) =M (a )
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the class of alpha-convex functions introduced by Mocanu®.

Motivated by above defined classes, we introduce the following generalized subclasses of p-valent
analytic functions of complex order related to sigmoid functions.

For h € C, let the class Tn'p(a;b,CDm'n) denote the subclass of Ap consisting of functions of
the form (1.2) and satisfying the following condition

! !

z\D}, f(z
p+% 1-a) ([[))nplf((z))) D’ f(z)

for 0< ¢ <1 and CIDmVn (Z) is a simple logistic sigmoid activation function and

Zp

m* f(Z) where N+ p>0

an—l f (Z) =

The following observations are obvious:

0 Tovp(a;b,CDmvn)sMp(a;b,CDm‘n)
M To,0b0,,)=8;,(@,,)

(i) To,p(lib,cbm,n)fCb,p(CDm,n)
Recently, various authors as Abiodun®, Murugusundramoorthy et al.’, Olatunji et al.!2, and Olatunji*
have studied sigmoid function for different classes of analytic and univalent functions.

In the present work, we obtained few coefficient bounds for the class Tn'p(a;b,CDm'n) and the

relevant connection with Fekete-Szeg6 theorems and Hankel determinant.
To prove our result we shall make use of the following lemmas:

Lemma 1.* If a function p € P is given by
p(z)=1+ pz+ p,2° +..(z€ E),
then |pk|é 2,k e N where P is the family of all functions analytic in E for which p(O):l and

Re(p(z))>0(z € E).
Lemma 2.2 Let h be the sigmoid function defined in (1.1) and

®(z)=2 1+Z; {ZI: J

then CD e P,z | |<1 where CD( ) is a modified sigmoid function.

Lemma 3.2 Let
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then |®,,,(z) < 2.
Lemma4.® If

@(z):1+icnz”,
n=1L

n+1
where ¢, = (_21)' , then |Cn| <2,ne N andtheresult is sharp for each n.
n:

2. [Initial Coefficients
Theorem 2.1 If f(Z)e A, of the form (1.2) is belonging to Tn'p(a;b,CDm'n), then

a <—p|b| 2.1
PUT 2ln+ p+al @1)
p2|b|2[(n +p) +a(2n+2p +1)]
ap+2 = > (22)
4n+p+a)f(n+p+l)n+p+2a)
and
ap+3 S|hl| (2‘3)
where

3{(n+ p/ +a{2n+2p+1)}{(n+ p/(n+p+a+1)+an+ p+2)(2n+2p+1)}

3b3
P 2

:&n+ p+a)’(n+p+Ln+p+2n+p+3)

—{(n+ p)* +3cn+ p+1)+a}
Proof. As f(z) c Tn,p(ﬂ’; b®,, ) , therefore

p+ é{(l l\ (D f(z))’_,_lZ(anf(Z))’

D’ f(2) D’ (2) ‘p] = p®, .(2) 2.4)

1 1 1 1 779
o (2)=1+=z—-——2+—2°-——2°+—7"—..
where m,n( ) 2 24 240 64 20160 29

We have

(D2, 1(2)
an—l f (Z)
Replacing n by n+1in (2.7), we get

=p+(n+pa,,z+(n+ p)[(n+ p+la,.,—(n+p) apﬂ]z Fo @7

p
z(Dn f(2) =p+(n+p+l)a,,z+(n+ p+1)[(n+ p+2)a,.,—(+p+1) ap+1]z +.. (2.8)

D! f(z)
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Using (2.6), (2.7) and (2.8), (2.4) can be expanded as
(n+p+aja,,z +[(n+ p+ln+p+20ja,,, —((n+ p/ +oa(2n+2p+1))a§+1]z2
N (n+p+2fn+p+2[n+p+3aja,, —2 {(n+ p/(n+p+a)+(n+pf +aofn+ p+2)(2n+2p+1)}ap+lap+2 5,
+{(n+ p)’+3ofn+ p+1)+a}a;1 2.9)

=b;{; z —214 2+ }[(1+a( p—1)+{1+aplay, z-+{1+cf p+1)a, .2 +. ]

Equating the coefficients of z,z2 and z%in (2.9), we obtain

pb

apg = m, (210)

202|(n+ p) +a(2n+2p+1
pi2 = P [( +p) ral2n+2p+ )] 2.12)

a 4(n+ p+a)2(n+ p+1)(n+ p+2a)

and
Ap3 = hl. (212)

Results (2.1), (2.2) and (2.3) can be easily obtained from (2.10), (2.11) and (2.12) respectively.
Forn =0 in Theorem 2.1, the following result is obvious:

Corollary 2.1 If f(z)e M p(a;b,CDm'n),then

e PP p2p[p? + a(2p +1)]
" 2(pta) " A(p+af(p+1)p+2a)
and
. < P’ \3{p2+a(2p+1)}{p2(p+a+1)+a(p+2)(2p+1)}_ A pala
A aFlpp+0p ) 2 i stp )

Forn =0, o = 0 Theorem 2.1 gives the following result:
Corollary 2.2 If f(z)e S;p(CDmvn), then

a <H ‘a < p2|b|2 and
P PP 4(p +1)(p + 2a)
B 3t}
9 g p+1lpr2)| 2 (P +ap+)
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Puttingn =0, oo = 1in Theorem 2.1, we obtain the following result:

Corollary 2.3 If f(z)e Cb'p(CDm'n),then

o b
6 B O e (X
and
P [ale+y(p2)

—{p3+3(p+1)+1 _

2,4/ < .
p+1(p+2p+3) 2
3. Fekete-Szegd Inequality
Theorem. 3.1 If f(Z)e A, of the form (1.2) is belonging to Tn'p(a;b,CDm'n), then

<

2
‘ap+2 —pa p+1

p2|b|2 |(n+ p) +a(2n+2p+1) ‘
~ 4. 3.1)

4n+p+af| (n+p+1)n+p+2a)
Proof. From (2.10) and (2.11), we have

) p*h? (n+p) +a(2n+2p+1)
a‘p+2_:ua‘p+1: 2 —H|
4n+p+af| (n+p+1)n+p+2a)

(32)

Hence (3.1) can be easily obtained from (3.2)
For p=1, Theorem 3.1 gives the following result:

Corollary 3.1 If f(z)e Ml(b,CDm'n), then

|b|2 (n+1f +a(2n+3) _
n+a+1) | (n+2)n+2a+1) H

‘as—uazz‘g 4(

4. Second Hankel Determinant :

Theorem. 4.1: If f(Z)e A, ofthe form (1.2) is belonging to Tn'p(a;b,CDm'n),then

pbh, B

= 2(n+p+a)

ph?

2
‘a‘p+1ap+3 - :ua'p+2 4.1)

where hy and h,, are defined in (2.10) and (2.11) respectively.
Proof. From (2.10), (2.11) and (2.12), we have

pbh
Aplpz — :La;ZHZ = m -y, 4.2)

Hence (4.1) can be easily obtained from (4.2)

For p=1, Theorem 4.2 gives the following result:
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Corollary 4.1 If f(z)e Gl(b,CDm'n),then

5. Conclusion

The results obtained above serve as a new generalization of subclasses of multivalent  functions

related to Sigmoid functions. The investigation of initial coefficients bounds, Fekete-Szeg6 inequality and
Hankel determinant for similar classes can be the scope of future research in this direction.
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