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Abstract

In this paper, the authors investigate the initial coefficient bounds for a new generalized subclass of
multivalent functions related to Sigmoid function. Also the relevant connections to Fekete-Szegö inequality
and Hankel determinant for these classes are briefly discussed. Our results serve as a new generalization in this
direction.
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1.  Introduction and Preliminaries

The theory of special functions is significantly important to scientists and engineers. Though not
with any specific definition but its applications extend to physics, computer etc. Recently, the theory of special
functions has been overshadowed by other fields like real analysis, functional analysis, algebra, topology and
differential equations.

There are various special functions but we shall concern with one of the activation function known as
sigmoid function or simple logistic function. Activation function is an information process that is inspired by
the biological nervous system such as brain processes information. It comprises of large number of highly
interconnected processing elements (neurons) working together to solve  a specific task. The function works in
similar way the brain does, it learns by examples and cannot be programmed to solve a specific task.

The sigmoid function of the form
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is differentiable and has the following properties:
 It outputs real numbers between 0 and 1.
 It maps a very large input domain to a small range of outputs.
 It never loses information because it is a one-to-one function.
 It increases monotonically.
The four properties above shows that sigmoid function is very useful in geometric function theory.

Let  pA  denote the class of functions of the form
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which are analytic and  p-valent in the open unit disc  : 1E z z  .

     Let  U  be the class of bounded functions
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which are regular in the unit disc and satisfying the conditions

                                                       (0) 0w    and    1w z  in  E.

For functions f  and g analytic  in E, we say that  f  is subordinate to g, denoted by   f g ,  if  there

exists a Schwarz function    Uzw  ,   w z  analytic in  E with  (0) 0w   and    1w z   in  E, such that
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Hadamard product of  the functions f  and g is denoted by  f  * g and is defined as
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Let    z   be an analytic function with positive real part in E such that    10   and    00    and
maps E onto a region starlike with respect to 1 and symmetric with respect to the real axis.

Fekete and Szegö in 1933 gave the sharp bound for the functional  2
23 aa   for the functions in the

class S of univalent functions when  is real. The determination of the sharp bounds for the functional  2
23 aa 

is known as the Fekete-Szegö problem and this has been investigated by several authors for different subclasses
of univalent functions.



166 Gagandeep  Singh,  et al.,  JUSPS-A  Vol. 30(3), (2018).

In 1976, Noonan and Thomas9 stated  the qth  Hankel determinant for q 1 and  n 1  as
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This determinant  has  also  been  considered  by  several  authors. Easily, one can observe that the

Fekete and Szegö functional  is   12H .

For   q 2 and   n 2, 
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H    is the second Hankel determinant.

A function    pAzf   is said to be in the class     *
, pbSzf    if
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A function    pAzf   is said to be in the class     pbCzf ,  if it satisfies
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The classes   *
, pbS  and   pbC ,  were studied in1. For b = 1 we have the classes    *

pS  and

  pC   (see2) and for  p = b = 1 the classes reduced to the classes   *S  and    C  which were earlier

introduced and investigated in4.  These classes become the classes of starlike and convex functions respectively
when
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A function    pAzf   is said to be in the class     pMzf   if for   0 ,
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The function in class   pM   are called p-valent alpha-convex function. Obviously     ,1  MM 



the class of alpha-convex functions introduced by Mocanu6.
Motivated  by above defined classes, we  introduce  the  following  generalized subclasses  of  p-valent

analytic functions of complex order related to sigmoid functions.

For  Cb , let  the class   nmpn bT ,, ,;    denote  the  subclass  of  pA  consisting  of  functions of
the form (1.2) and satisfying the following condition
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for  10   and   znm ,  is a simple logistic sigmoid activation function and
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The following observations are obvious:

(i)     .,;,; ,,,0 nmpnmp bMbT  

(ii)     .,;0 ,,,,0 nmpbnmp SbT  

(iii)      .,;1 ,,,,0 nmpbnmp CbT 

Recently, various authors as Abiodun10, Murugusundramoorthy et al.7, Olatunji et al.12,  and Olatunji11

have studied sigmoid function for different classes of analytic and univalent functions.

In the present work, we obtained few coefficient bounds for the class   nmpn bT ,, ,;   and the
relevant connection with Fekete-Szegö theorems and Hankel determinant.

To prove our result we shall make use of the following lemmas:
Lemma 1.13  If a function p  P is given by

    ,...1 2
21 Ezzpzpzp 

then  Nkpk  ,2  where P is the family of all functions analytic in E for which    10 p  and
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Lemma 2.3  Let  h  be the sigmoid function defined in (1.1) and
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then    1,  zPz  where   z   is a modified sigmoid function.

Lemma 3.3  Let
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then    .2,  znm

Lemma 4.3  If
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2.   Initial Coefficients

Theorem 2.1   If     pAzf   of the form (1.2) is belonging to    nmpn bT ,, ,;  , then

 

 ,21 
 pn

bp
a p (2.1)

     
    


214
122

2

222

2 


 pnpnpn

pnpnbp
a p (2.2)

and
 

13 ha p  (2.3)
where

 

     

           

    
.

13
2

122211223

3218 3

22

3

33

1





























pnpn

pnpnpnpnpnpn

pnpnpnpn
bph

Proof.   As   zf  nmpn bT ,, ,;   , therefore
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Replacing n  by  n+1 in (2.7), we get
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Using  (2.6), (2.7) and (2.8),  (2.4) can be expanded as
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Equating the coefficients of   2, zz  and  3z  in (2.9),   we obtain
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Results (2.1), (2.2) and (2.3) can be easily obtained from (2.10), (2.11) and (2.12) respectively.
For n = 0  in  Theorem  2.1,  the following result is obvious:

Corollary 2.1  If   zf  nmp bM ,,;   , then
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               For n = 0,  = 0 Theorem  2.1 gives the following result:

Corollary 2.2  If   zf  nmpbS ,,   ,  then
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            Putting n = 0,  = 1 in  Theorem  2.1,  we obtain the following result:

Corollary 2.3  If   zf  nmpbC ,,   , then
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3.  Fekete-Szegö  Inequality

Theorem.  3.1  If     pAzf   of the form (1.2) is belonging to   nmpn bT ,, ,;  , then
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Proof.  From (2.10) and (2.11), we have
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Hence (3.1) can be easily obtained from (3.2)
For  p = 1, Theorem 3.1 gives  the following  result:

Corollary 3.1  If   zf  nmbM ,, ,  then
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4.  Second Hankel Determinant :

Theorem.  4.1 :  If     pAzf   of the form (1.2) is belonging to    nmpn bT ,, ,;  , then
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where   h1  and  h2,  are defined in (2.10) and (2.11) respectively.
Proof.  From (2.10), (2.11)  and  (2.12), we  have
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Hence (4.1) can be easily obtained from (4.2)

For p = 1, Theorem 4.2 gives  the following  result:
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Corollary 4.1  If    zf  nmbG ,, , then
5.  Conclusion

The results obtained above serve as a new generalization of subclasses of multivalent    functions
related to Sigmoid functions. The  investigation of initial coefficients bounds, Fekete-Szegö inequality and
Hankel determinant for similar classes can be the scope of future research in this direction.
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