Matrix Groupoids

AUTHOR AND
AFFILIATION

V. RAJESWARI and P. GAJIVARADHAN
Department of Mathematics, Pachaiyappa’s College, Chennai – 600 030 (India)

KEYWORDS:

Groupoid matrix, Groupoid, matrix groupoid, pseudo nilpotent, pseudo zero divisors.

Issue Date:

December 2015

Pages:

ISSN:

2319-8044 (Online) – 2231-346X (Print)

Source:

Vol.27 – No.3

PDF

Click Here Download PDF

DOI:

jusps-A

ABSTRACT:

In this paper for the first time groupoid matrix are introduced and their properties are analysed. A matrix groupoid or a groupoid matrix is a collection of p × q matrices with entries from a groupoid (G, *) where groupoid matrix inherits the operation of G. Clearly groupoid matrix are non associative groupoids of finite order.

Copy the following to cite this Article:

V. RAJESWARI and P. GAJIVARADHAN, “Matrix Groupoids”, Journal of Ultra Scientist of Physical Sciences, Volume 27, Issue 3, Page Number , 2016


Copy the following to cite this URL:

V. RAJESWARI and P. GAJIVARADHAN, “Matrix Groupoids”, Journal of Ultra Scientist of Physical Sciences, Volume 27, Issue 3, Page Number , 2016

Available from: http://www.ultrascientist.org/paper/374/


In this paper for the first time groupoid matrix are introduced and their properties are analysed. A matrix groupoid or a groupoid matrix is a collection of p × q matrices with entries from a groupoid (G, *) where groupoid matrix inherits the operation of G. Clearly groupoid matrix are non associative groupoids of finite order.